
Neural MMO: Ingredients for Massively
Multiagent Artificial Intelligence Research

Joseph Suarez 1 Phillip Isola 1

Abstract

Simulated games have become a staple of multi-
agent intelligence research. Our work considers
massively multiplayer online role-playing games
(MMORPGs or MMOs), a genre of games that
has only recently begun to gain attention in the re-
inforcement learning community. MMOs capture
several complexities of real-world learning that
are difficult to integrate with existing methods.
We present several highlights from the ongoing
development of Neural MMO that are particularly
relevant to enabling reinforcement learning meth-
ods in artificial open worlds.

1. Introduction
From arcade to first-person shooter (FPS) to real-time strat-
egy (RTS) and massive online battle arena (MOBA), increas-
ingly complex game environments have accelerated recent
progress in deep reinforcement learning (RL) (Silver et al.,
2016; Baker et al., 2019; OpenAI, 2018; Berner et al., 2019;
Vinyals et al., 2019; Jaderberg et al., 2018). MMOs simulate
self-contained macrocosms with large, variable numbers of
players and realistic social strategy. Neural MMO is not yet
a full scale MMO but takes several steps in this direction.

We release convolutional, attentional, and recurrent base-
line policies [Video] capable of robust foraging and combat
over thousands of timesteps. All baselines make use of
an efficient IO subarchitecture that allows agents to inter-
face with Neural MMO’s rich underlying observation and
action spaces. Policies are trained with PPO (Schulman
et al., 2017) + GAE (Schulman et al., 2015) with no reward
shaping or other modifications. Agent value and attention
functions have learned reasonable estimates of the signifi-
cance and utility of different tiles (Section 3). Results are
reproducible overnight on personal-grade hardware.

1Massachusetts Institute of Technology. Correspondence to:
Joseph Suarez <jsuarez@mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

2. Neural MMO
Neural MMO is a massively multiagent environment for
artificial intelligence research. Agents forage for resources
and engage in strategic combat within a persistent game
world . Our environment implements a progression system
inspired by traditional MMOs and a full 3D renderer for
visualizations. Figure 1 details the three core game systems.
Agents may move aroung the grass and forest tiles of the
game map, but stone and water is impassible; lava is lethal.

Resource System: Agents spawn with 10 (configurable)
units of food, water, and health. At every time step, agents
lose 1 food and 1 water. If agents run out of food or water,
they begin losing health. If agents are well fed and well
hydrated, they begin regaining health. In order to survive,
agents must quickly forage for food, which is in limited
supply, and water, which is infinitely renewable but only
available at a smaller number of pools, in the presence of
100+ potentially hostile agents attempting to do the same.

Combat System: Agents can attack each other with three
different styles – Range, Mage, and Melee. Accuracy and
damage are determined by the attack style and the combat
stats of the attacker and defender. This system enables a
variety of strategies. Agents more skilled in combat can
assert map control, locking down resource rich regions for
themselves. Agents more skilled in maneuvering can suc-
ceed through foraging and evasion. The goal is to balance
between foraging safely and engaging in dangerous combat
to pilfer other agents’ resources and cull the competition.

Progression System: Progress in real MMOs varies on two
axes: soft advantage gained through strategic/mechanical
talent and hard numerical advantage gained through skill
levels/equipment. In Neural MMO, agents progress their
abilities through usage. Foraging for food and water grants
experience in the respective Hunting and Fishing skills,
which enable agents to gather and carry more resources. A
similar system is in place for combat. Agents gain levels
in Constitution, Range, Mage, Melee, and Defense through
fighting other agents. Higher offensive levels increase accu-
racy and damage while Constitution and Defense increase
health and evasion.

https://youtu.be/DkHopV1RSxw


Neural MMO: Ingredients for Massively Multiagent Artificial Intelligence Research

Figure 1. Neural MMO is a massively multiagent environment for AI research. Agents compete for resources through foraging and
combat. Observation and action representation in local game state enable efficient training and inference. A 3D Unity client provides
high quality visualizations for interpreting learned behaviors. The environment, client, training code, and policies are fully open source,
officially documented, and actively supported through a live community Discord server.

3. Experiments: RLlib Baseline Models
Neural MMO is a large environment with variably sized
populations and complex structured IO (observation/action)
spaces. These properties are essential to the development of
Neural MMO as an increasingly rich artificial open world.
However, existing reinforcement learning frameworks were
not designed with these properties in mind.

RLlib (Liang et al., 2017) is a popular reinforcement learn-
ing framework built on top of the excellent Ray (Moritz
et al., 2018) distributed computing library. We have worked
with the developers to add support at the framework level:
RLlib and Neural MMO are now natively compatible. As
has been the case in recent work on large multiagent envi-
ronments, training quality policies in Neural MMO became
quite straightforward given good infrastructure. RLlib’s
default PPO implementation coupled with a small baseline
model produces high-quality policies capable of surviving
for thousands of timesteps (Figure 2). Our networks require
only a few hours of training on 4 CPU cores and a single
GTX 1080 TI GPU at 10 percent utilization.

In the remainder of this paper, we visualize emergent in-
telligent properties of the learned policy and discuss key
properties of the architecture and environment design. We
strongly encourage readers to watch the anonymized two
minute video linked in the Introduction.

4. In-Build Research Overlays
Neural MMO includes a full Unity3D client for test-time
rendering and associated research tools that enable users
to visualize various properties of learned agent policies. In

Figure 2. Baseline training curves. Recurrent and convolutional
policies both perform quite well; agents typically die in unpre-
dictable combat rather than from obvious foraging errors.

addition to viewing the progression levels and behaviors
of individual agents, users can register custom overlays –
effectively image maps rendered over the environment with
transparency and updated in real time. Our API enables
users to render arbitrary custom overlays; the four shown in
Figure 4 are included with the baseline policies.

The counts exploration overlay shows that agents spread
out to cover the entire map, as well as that certain areas are
more popular than others. Value function overlays demon-
strate that agents have correctly learned the importance of
being near both food and water, not just either individually.
Likewise, tiles near the edge of the map are unfavorable,
as this is where competing agents spawn. We can also see
that agents have correctly learned to attend to resources
(food and water) and obstacles in their path while ignoring
irrelevant grass tiles.



Neural MMO: Ingredients for Massively Multiagent Artificial Intelligence Research

Counts Explorations Local Value Function Local AttentionGlobal Value Function

Figure 3. In-game overlays visualize various aspects of learned policies. Counts exploration shades tiles based on the number of visitations.
Baseline policies explore all but a few small and resource-poor areas of the map. Local and global value functions shade tiles based on
agents’ learned value function. The local value overlay shades tiles as agents walk over them with the current value function, taking into
account the current state of the environment. The global value function is precomputed for each tile as if no other agents were present. In
either case, agents have learned to value adjacent clumps of food and water. The attention overlay shows which tiles most influence agent
actions. See Figure 4 for additional information on this overlay.

5. Environment Design
5.1. Meaningful Persistence

The systems described in Section 2 encourage robust strat-
egy over long horizons of persistent play with no environ-
ment resets. We also confirm that some such behaviors
are learned in practice. The Convolutional and Recurrent
baselines policies both develop robust foraging and combat
strategies. We have seen individual agents survive for up to
10,000 timesteps – around an hour and a half in real time.

Not all persistence is meaningful. If an agent can survive
for 10,000 timesteps by repeatedly solving five- or ten-step
planning problems to navigate to the next food pellet, then
actions at time step 50 have practically no influence on
outcomes at time step 10,000. That is, the environment is
persistent in name only. In Neural MMO, meaningful persis-
tence is introduced through strong interagent dependencies –
agents must develop reasoning over increasingly long time
horizons to have a fighting chance at survival. To gain a
competitive advantage, agents are incentivized to level their
foraging and combat stats efficiently, taking smart risks to
secure resource-rich terrain and eliminate vulnerable adver-
saries. Inefficient agents will find themselves disadvantaged
when they come into contact with higher level opponents.

5.2. Randomization

Early in development, Neural MMO used hand-crafted game
maps with no randomization. Learning was difficult and
inconsistent at best, even at substantial scale. Recent works
(Cobbe et al., 2019; OpenAI et al., 2019) have found that
environment randomization serves as an effective learning
curriculum. In Neural MMO, training on 256 randomly
generated maps significantly increases learnability and final
policy quality. Including the test map as one of the 256
actually results in higher policy quality than training directly

Procedural Maps

Learned Combat Agents attend to resources + nearby obstacles

Figure 4. Top left: agents learn to engage in opportunistic combat,
pilfering resources from nearby agents. Bottom left: procedural
map generation creates a smooth learning curriculum and improves
policy robustness. Right: Agents attend to food (below) + water
and nearby obstacles (left) but ignore grass tiles (above/right).

and exclusively on the test map. (Cobbe et al., 2019) suggest
that even more maps may be beneficial.

5.3. Efficient Internal Representation

In Neural MMO, we procedurally generate tile-based terrain
by thresholding 2D Perlin ridge fractals (Perlin, 1985). En-
vironments simulating realistic physics are often preferred
over more ”toy” grid-worlds. Physically simulated environ-
ments do have their place, especially in robotics and real-
world transfer tasks. However, it is often possible to achieve
far greater complexity per unit of compute in grid-worlds.
This approach has proven effective: some of the most pop-
ular and comprehensive open-world MMOs actually use a
grid representation internally – animation smoothing keeps
gameplay responsive while keeping servers lightweight.



Neural MMO: Ingredients for Massively Multiagent Artificial Intelligence Research

6. General IO
Small scale RL environments typically provide input ob-
servations as raw data tensors and output actions as low-
dimensional vectors. More complex environments may
contain variable length observation and action spaces with
mixed data types: standard architectures that expect fixed
length tensors cannot process these IO spaces. Our solu-
tion to this problem parameterizes the observation space as
a set of entities, each of which is parameterized by a set
of attributes (Figure 1, Input). We automatically generate
attentional networks to select variable length action argu-
ments by keying against learned entity embeddings (Figure
1, Output).

6.1. The Input Problem

We define local game state by the set of observable objects
or entities (e.g. agents and tiles), each of which is param-
eterized by a number of local properties or attributes (e.g.
health, food, water). At compile time, embedding networks
ex1

, ex2
, ... are defined for each attribute. We also define

soft attention functions {fyj} and g to be used later.

Input Entity set of attribute sets

X := {xi} Define attributes xi

Y = {exi
(xi)} Embed entity attributes

Z = {fyj
({x1,...,n} ⊆ Y )} Soft attend fyi

to attributes
o = g(Z) Soft attend g to entities

At run time, we project x1, x2, ... to fixed length attribute
embedding vectors y1, y2, ... using embedding layers exi

.
Soft attention layers fyj

aggregrate across the attribute em-
beddings of each entity to produce a representation zi for
each entity. Finally, an attentional layer g aggregates across
all entity embeddings Z to produce a flat observation em-
bedding o. We return both o and Z.

6.2. The Output Problem

We define agent decision space by a list of actions, each
of which takes a list of arguments. Actions are callable
function references that the environment can invoke on the
associated argument list in order to execute an agent’s deci-
sion, such as Move→ [North] or Attack→ [Melee, Agent
ID]. At compile time, the user specifies a hard attentional
architecture h. We reuse the Input module to generate em-
bedding layers for all arguments.

Output Action list of arg lists

A := [Ai : [a1, ..., an], ...] Define arguments Aij

Bij = eaij
(Aij) Embed arguments to Bij

argAi
= h(o, {Bi, z̃i ⊆ Z}) Hard attend f to args

At run time, we convert the hidden state o of the main net-
work into an action list of argument lists. To do so, we em-

bed candidate arguments for all actions Aij to fixed length
vectors Bij using eaij , similarly to as in the Input module.
As entities can be arguments, we will also consider Z from
the input network. For each candidate action-argument Aij ,
we compare embeddings {Bi, z̃i} to the hidden state using
the attentional function h to produce a softmax distribution.
Sampling from this distribution yields a hard attentional
choice argAi over arguments. Finally, we return game ac-
tions paired with their selected argument lists.

7. Discussion and Limitations
Comparison to OpenAI Five: Neural MMO and Ope-
nAI Five (OpenAI, 2018) are both many-agent systems
trained entirely via self-play using PPO. OpenAI Five uses
reward shaping to solve DoTA 2, a fixed 5v5 task. The re-
sultant policies are much more complex than those learned
in Neural MMO and are capable of beating top professional
players. By comparison, Neural MMO operates over large
(100+) variably sized agent populations using < 0.001% of
OpenAI Five scale hardware and sparse, unshaped rewards.

IO Restrictions: We currently support only discrete 1D
observations, continuous 1D observations, fixed-choices
discrete actions, and variable-length discrete actions. Addi-
tional work will be required to expand our network genera-
tion code to handle other useful data types, such as vector-
valued inputs and continuous actions.

Map Layout: Agents currently spawn at the edges of the
map at a constant rate and forage inwards. This makes it
difficult to study emergent cooperation in populations – it
would be better if agents spawned in the same general area
and could split off into groups. There are classic challenges
associated with designing spawn areas in game development
such as spawn camping – high level players sieging spawn
and preventing new players from surviving long enough
to have a fighting chance. We are working on a balanced
central spawn implementation for the next platform update.

Randomization Limitations: We do not have randomiza-
tion outside of the map level. It is possible to randomize
more aspects of the game systems, and even learn them
jointly with the policy. This is the great challenge of open-
endedness and is a major target for future work.

Environment Resets: Neural MMO is persistent at test-
time: we can run the environment for hours and watch
agents over long time horizons. However, we are forced to
periodically randomize the map at train-time. This limita-
tion is entirely due to small available hardware scale. RLlib
provides scalable parallelization – if we had 256 cores, we
could simply train on one persistent map per core.



Neural MMO: Ingredients for Massively Multiagent Artificial Intelligence Research

References
Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G.,

McGrew, B., and Mordatch, I. Emergent tool use from
multi-agent autocurricula, 2019.

Berner, C., Brockman, G., Chan, B., Cheung, V., Debiak, P.,
Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., Józefowicz, R., Gray, S., Olsson, C., Pachocki, J. W.,
Petrov, M., de Oliveira Pinto, H. P., Raiman, J., Salimans,
T., Schlatter, J., Schneider, J., Sidor, S., Sutskever, I.,
Tang, J., Wolski, F., and Zhang, S. Dota 2 with large scale
deep reinforcement learning. ArXiv, abs/1912.06680,
2019.

Cobbe, K., Hesse, C., Hilton, J., and Schulman, J. Lever-
aging procedural generation to benchmark reinforcement
learning, 2019.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L.,
Lever, G., Castaneda, A. G., Beattie, C., Rabinowitz,
N. C., Morcos, A. S., Ruderman, A., et al. Human-
level performance in first-person multiplayer games with
population-based deep reinforcement learning. arXiv
preprint arXiv:1807.01281, 2018.

Liang, E., Liaw, R., Moritz, P., Nishihara, R., Fox, R., Gold-
berg, K., Gonzalez, J. E., Jordan, M. I., and Stoica, I.
Rllib: Abstractions for distributed reinforcement learn-
ing, 2017.

Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R.,
Liang, E., Elibol, M., Yang, Z., Paul, W., Jordan, M. I.,
and Stoica, I. Ray: A distributed framework for emerg-
ing ai applications. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implemen-
tation, OSDI18, pp. 561577, USA, 2018. USENIX Asso-
ciation. ISBN 9781931971478.

OpenAI. Openai five. https://blog.openai.com/
openai-five/, 2018.

OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M.,
Litwin, M., McGrew, B., Petron, A., Paino, A., Plap-
pert, M., Powell, G., Ribas, R., Schneider, J., Tezak, N.,
Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba,
W., and Zhang, L. Solving rubik’s cube with a robot hand,
2019.

Perlin, K. An image synthesizer. SIGGRAPH Comput.
Graph., 19(3):287296, July 1985. ISSN 0097-8930. doi:
10.1145/325165.325247. URL https://doi.org/
10.1145/325165.325247.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel,
P. High-dimensional continuous control using generalized
advantage estimation, 2015.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms,
2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484, 2016.

Vinyals, O., Babuschkin, I., Chung, J., Mathieu, M.,
Jaderberg, M., Czarnecki, W., Dudzik, A., Huang, A.,
Georgiev, P., Powell, R., Ewalds, T., Horgan, D., Kroiss,
M., Danihelka, I., Agapiou, J., Oh, J., Dalibard, V.,
Choi, D., Sifre, L., Sulsky, Y., Vezhnevets, S., Molloy,
J., Cai, T., Budden, D., Paine, T., Gulcehre, C., Wang,
Z., Pfaff, T., Pohlen, T., Yogatama, D., Cohen, J., McK-
inney, K., Smith, O., Schaul, T., Lillicrap, T., Apps, C.,
Kavukcuoglu, K., Hassabis, D., and Silver, D. AlphaS-
tar: Mastering the Real-Time Strategy Game StarCraft II.
https://deepmind.com/blog, 2019.

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://doi.org/10.1145/325165.325247
https://doi.org/10.1145/325165.325247
https://deepmind.com/blog

