
The Second Neural MMO Challenge: Learning in Massively

Multiagent Open Worlds

Joseph Suarez∗, Sharada Mohanty§, Jiaxin Chen†, Hanmo Chen†⋆,
Clare Zhu£, Xiu Li⋆, Julian Togelius‡, Phillip Isola∗

∗MIT, †Parametrix.AI, §AICrowd,
⋆Tsinghua Shenzhen International Graduate School, Tsinghua University,

£Stanford University, ‡New York University

November 7, 2023

Abstract

Neural MMO [SDIM19] is an open-source environment for agent-based intelligence research
featuring large maps with large populations, long time horizons, and open-ended multi-task ob-
jectives. We propose a benchmark on this platform wherein participants train and submit agents
to accomplish loosely specified goals – both as individuals and as part of a team. The submit-
ted agents are evaluated against thousands of other such user submitted agents. Participants get
started with publicly available code base for Neural MMO, scripted and learned baseline mod-
els, and training/evaluation/visualization packages. Our objective is to foster the design and
implementation of algorithms and methods for adapting modern agent-based learning methods
(particularly reinforcement learning) to a more general setting not limited to few agents, narrowly
defined tasks, or short time horizons. Neural MMO provides a convenient setting for exploring
these ideas without the computational inefficiency typically associated with larger environments.

Keywords

reinforcement learning, multiagent, cooperation, open-ended, MMO

1 Contact Information

• Joseph Suarez, MIT, jsuarez@mit.edu

• Jiaxin Chen, Parametrix.AI, jiaxinchen@chaocanshu.ai

• Hanmo Chen, Tsinghua Shenzhen International Graduate School, Tsinghua University
chm20@mails.tsinghua.edu.cn

2 The Proposed Neural MMO Challenge description

2.1 Background and impact

The real world is a massively multiagent environment, and the ability to learn and reason within it is
a hallmark of human intelligence. It seems inconceivable that artificial agents without this capability
could operate intelligently within the real world outside of narrowly predefined tasks. Training directly
within the real world has proven unwieldy because it often requires specialised hardware, is difficult to
reproduce, and is generally expensive. The vast majority of tasks considered in modern reinforcement
learning research are simulated environments. However, most of these are limited to a single or a few
agents, short time horizons, and narrowly defined tasks.

In some sense, the lack of progress on more general environments can be attributed to a lack
availability of such environments. Neural-MMO provides such a platform, and the purpose of the

1

mailto:jsuarez@mit.edu
mailto:jiaxinchen@chaocanshu.ai
mailto:chm20@mails.tsinghua.edu.cn


proposed benchmark is to spur research upon it. This would produce new methods for training many-
agent policies, learning over long horizons, and navigating multi-modal and loosely specified tasks.
The ultimate goal is, of course, to integrate associated findings into real-world agents – Neural-MMO is
simply a computationally efficient setting for developing such methods.

Initial baselines on the Neural-MMO environment have revealed that simple single-agent reinforce-
ment learning methods work surprisingly well on this new domain. This makes the competition ac-
cessible to the entire reinforcement learning community – specialization to multi-agent learning is
not required. That said, the later rounds of the competition will explore team-based play within
the Neural-MMO environment. We expect specialised cooperation-based algorithms to be useful here.
However, many multiagent reinforcement learning algorithms make strong assumptions about the task
structure that may not prove true in the more general Neural-MMO setting – it is possible that simpler
methods may prevail. Understanding the scalability of various modern reinforcement learning methods
to increasingly general environments is the other explicit goal of the competition.

2.2 Environment

Neural-MMO is a game environment capable of hosting large number of agents in a interactive map.
The maps are procedurally generated, so every map is different and allow for different themes and
configurations. For example spawn location, resource density and item locations can be configured.
The map is surrounded by a lake of lava, which is lethal to all agents. Every map features terrain
features like grass, forest, water, stone etc. Agent may only pass through grass and forests but get
blocked by water and stone.

The environment state is represented by a grid of tiles. Each tile has a particular assigned material
with various properties, but it also maintains a set of references to all occupying entities. When agents
observe their local environment, they are handed a crop of all visible game tiles, including all visible
properties of the tile material and all visible properties of occupying agents. All parameters in the
following subsystems are configurable; we provide only sane defaults obtained via multiple iterations
of balancing.

2.2.1 Tiles

We adopt a tile based game state, which is common among MMOs. This design choice is computation-
ally efficient for neural agents and can be made natural for human players via animation smoothing.
When there is no need to render the game client, as in during training or test time statistical tests,
the environment can be run with no limit on server tick rate. Game tiles are as follows:

• Grass: Passable tile with no special properties

• Forest: Passable tile containing food. Upon moving into a food tile, the agent gains 5 food and
the tile decays into a scrub.

• Scrub: Passable tile that has a 2.5 percent probability to regenerate into a forest tile on each
subsequent tick

• Stone: Impassible tile with no special properties

• Water: Passable tile containing water. Upon moving adjacent to a water tile, the agent gains 5
water.

• Lava: Passable tile that kills the agent upon contact

2.2.2 Agents

Input: On each game tick, agents observe a 15x15 square crop of surrounding game tiles and all
occupying agents. We extract the following observable properties:

Per-tile properties:

• Material: an index corresponding to the tile type

• nEnts: The number of occupying entities. This is technically learnable from the list of agents,
but this may not be true for all architectures. We include it for convenience here, but may
deprecate it in the future.

2



Per-agent properties:

• Lifetime: Number of game ticks alive thus far

• Health: Agents die at 0 health (hp)

• Food: Agents begin taking damage at 0 food or water

• Water: Agents begin taking damage at 0 food or water

• Position: Row and column of the agent

• Position Deltas: Offsets from the agent to the observer

• Damage: Most recent amount of damage taken

• Same Color: Whether the agent is the same color (and thereby is in the same population) as
the observer

• Freeze: Whether the agent is frozen in place as a result of having been hit by a mage attack

Output: Agents submit one movement and one attack action request per server tick. The server
ignores any actions that are not possible or permissible to fulfil, such as attacking an agent that is
already dead or attempting to move into stone. Pass corresponds to no movement.

Movement: North South East West Pass
Attack: Melee Range Mage

2.2.3 Foraging

Foraging implements gathering based survival:

• Food: Agents begin with 32 food, decremented by 1 per tick. Agents may regain food by
occupying forest tiles or by making use of the combat system.

• Water: Agents begin with 32 water, decremented by 1 per tick. Agents may regain water by
occupying tiles adjacent to water or making use of the combat system.

• Health: Agents begin with 10 health. If the agent hits 0 food, they lose 1 health per tick. If
the agent hits 0 water, they lose 1 health per tick. These effects stack.

The limited availability of forest (food) tiles produces a carrying capacity. This incurs an arms race
of exploration strategies: survival is trivial with a single agent, but it requires intelligent exploration
in the presence of competing agents attempting to do the same.

2.2.4 Combat

Combat (Figure 1) enables direct agent-agent confrontation by implementing three different attack
”styles”:

• Melee: Inflicts 10 damage at 1 range

• Ranged: Inflicts 2 damage at 1-2 range

• Mage: Inflicts 1 damage at 1-3 range and freezes the target in place, preventing movement for
two ticks

Each point of damage inflicted steals one point of food and water from the target and returns it
to the attacker. This serves as an incentive to engage in combat. It is still fully possible for agents to
develop primarily foraging based strategies, but they must at least be able to defend themselves. The
combat styles defined impose clear but difficult to optimize trade offs. Melee combat fells the target
in one attack, but only if they are able to make their attack before the opponent retaliates in kind.
Ranged combat produces less risky but more prolonged conflicts. Mage combat does little damage but
immobilizes the target, which allows the attacker to retreat in favor of a foraging based strategy. More
aggressive agents can use mage combat to immobilize their target before closing in for the kill. In all
cases, the best strategy is not obvious, again imposing an arms race.

3



Figure 1: Example combat behavior

Figure 2: Achievement system with point thresholds for the first round.

2.2.5 Achievement System

Neural-MMO features an achievement system inspired by modern games. Agents may complete tasks
of different difficulty (easy, normal, and hard) in a number of different categories, each awarding a
different number of points. Figure 2 illustrates the achievement system with point thresholds for the
first round of the proposed competition.

By design, it is possible to complete easy tasks without much deviation in overall strategy. Medium
tasks require significant planning and time investment. Hard tasks require commitment to a premedi-
tated strategy.

Relative difficulty across tasks was calibrated using the scripted and pre-trained baseline models.
We evaluated these baselines across several trials and adjusted task thresholds accordingly. The base-
lines solve easy tasks roughly 50% of the time, normal tasks 10% of the time, and hard tasks less
than 1% of the time. We believe this to be a reasonable initial calibration, and we will refine these
thresholds throughout the competition based on participant feedback.

Points are awarded per-player in round 1 and per-team in rounds 2 and 3. Concretely, all rounds
have a maximum score of 100 points, but in rounds 2 and 3, a task is considered completed if it is
achieved by any agent on the team. This incentivizes specialization and division of labor – another
important property of real-world intelligence that has been relatively unexplored in reinforcement
learning.

2.3 Competition Design

2.3.1 Rounds

The proposed benchmark is divided into three Rounds defined by progressively increasing configura-
tions of the map size, population size, and team size:

Round Map Size Population Size Team Size
#1 128 128 1
#2 128 128 8

Table 1: Configurations across Rounds

4



Round 1 is designed as an accessible entry point into the competition. Round 1 features Game
Servers of 128x128 maps with a population size of 128 agents and a team size of 1. Hence,
participants submit a single policy to compete against 127 other agents on a 128x128 map. Simple
methods are expected to work reasonably well and do not require extensive prior knowledge of multi-
agent algorithms or even reinforcement learning in general. Our baselines were trained using a single
GPU in less than a day, and reasonable performance is attainable within a few hours of training:
participants with access to a single personal GPU or even Google Colab will be able to compete. At
the same time, the task ceiling is sufficiently high to distinguish between submitted policies: there are
few, if any, environments that require robustness to so many unseen opponents. This introduces an
opportunity for significant advances in robust learning algorithms including population-based training,
historical self-play, and exploiter networks.

Round 2 features Game Servers of 128x128 maps with a population size of 128 agents and
a team size of 8, introducing team-based play. Participants may use their Round 1 submission as a
starting point but will need to introduce cooperation into their approach. Credit assignment becomes
rapidly (perhaps exponentially) more difficult as the number of cooperative agents increases. It is
unclear whether the reward sharing schemes used in 2-5 agent cooperative tasks will scale to teams
of 32. This task incentives participants to explore the issue in order to take advantage of greater
coordination.

2.4 Metrics

Across all the rounds, participants will be able to submit their trained policies to our automated evalu-
ation servers. On receipt of the submitted policies, our evaluators will evaluate the submitted policies
immediately on several held-out maps against a fixed pool of scripted and/or pretrained opponents.
Some of these scripted and pretrained oppponents will be made available to the participants in order
to facilitate local validation for the participants. Points will be awarded based on the achievement
system described in Section 2.2.5, and all scores will be recorded on the public leaderboard of the
round. This evaluation provides immediate feedback but will not be used to determine competition
winners.

2.4.1 Tournaments

Apart from the public leaderboard of the round, we will also maintain a Tournament Leaderboard
for each of the rounds. Every week we will run a Tournament using the best submission from the
top-N teams on the public leaderboard. The Tournament will be composed of multiple ”Games” using
Neural-MMO where user submitted policies will be the ”players”. The Game specific rankings will be
determined by the in-game achievement points (as described in Section 2.2.5), which will be used to
update the TrueSkill ratings for the individual players (user submitted policies). The updated TrueSkill
ratings are then used to match groups of ”players” optimally for the subsequent games. These games
are iteratively conducted until the TrueSkill Ratings converge. The final TrueSkill ratings will be
then used to update the weekly Tournament Leaderboard. The winners of the competition will be
determined by the final standings on this Tournament Leaderboard.

Honorary mentions may be awarded for approaches that stand out in other ways, such as using a
particularly small model, a simple training scheme, or lack of reward shaping.

2.5 Baselines, code, and material provided

Neural-MMO includes two scripted baselines and a pre-trained recurrent network with associated train-
ing code. Evaluation results for all three models are available on the project homepage above. The
round 1 task is very similar but not identical to the setting for which these baselines were de-
signed/trained. We have already begun performing the necessary adaptations.

• Baselines:
https://github.com/NeuralMMO/baselines

• Source Code:
https://github.com/NeuralMMO/environment

5

https://github.com/NeuralMMO/baselines
https://github.com/NeuralMMO/environment


Figure 3: Overlays for visualizing learned agent behaviors.

• API:
https://neuralmmo.github.io

Participants will have access to the full source code of Neural-MMO: environment, map generator,
evaluations, renderer, and visualizations. The baselines above include two strong scripted models and
one pretrained recurrent model with all associated source and training code. We have also provided
API documentation and guides for the various components of the environment.

We will not be providing hardware or cloud credits for training, but we expect participants with
access to a single GPU to be able to take part comfortably. Note that even our baseline was trained
using a single commodity GPU for less than a day. We believe this efficiency is currently unique to the
Neural-MMO platform: there are no other comparably complex many-agent environment, and many of
the best few-agent environments require industry-scale hardware (e.g. DoTA, Starcraft, Go, DeepMind
Capture the Flag, OpenAI Hide and Seek).

3 Organizational aspects

3.1 Protocol

3.1.1 Platform

The evaluation of the submissions will be managed by AIcrowd. The platform offers state-of-the art
technology and management specifically for running competitions like the one proposed here. The
technology underlying AIcrowd has been tried and tested in over 50 competitions, including many at
NeurIPS (NeurIPS 2020 Procgen Challenge, NeurIPS 2020 Flatland Challenge, The Learning to Run
Challenge in 2017, 2018, 2019, the AI for Prosthetics Challenge in 2018, and the Adversarial Vision
Challenge in 2018, Disentanglement Challenge in 2019, MineRL Competition in 2019/2020, REAL
Robots Challenge in 2019). The AIcrowd platform offers to the full range of services for a competition,
from user management to discussion forums and leaderboards. The evaluation infrastructure can be
flexibly adapted to any execution requirements, and allows for full traceability and reproducibility of
the submissions.

6

https://neuralmmo.github.io


3.1.2 Submission Protocol

Throughout the competition, participants can work on their code bases as private git repositories
on https://gitlab.aicrowd.com. The requirements of the AIcrowd evaluators require participants
to package their intended software runtime in their repositories, to ensure that the evaluators can
automatically build relevant Docker images from their repositories, and orchestrate them as needed
by the evaluators of the particular round. This approach also ensures that all the user submitted code
that is successfully evaluated in context of this competition is both versioned across time, and also
completely reproducible.

Submission Mechanism. Participants can pack their evaluation codes and the model into an
archive file through the AICrowd UI page. On the successful evaluation of the submission, the scores
and any relevant artifacts(generated media, etc) are added automatically to the leader-board.

3.2 Rules

1. Do not make any effort to intentionally overwhelm our evaluation servers.

2. Participants may mark up to three submissions for inclusion in the tournament at any given
time.

3. Participants may adjust their algorithm, training scheme, and reward in response to aggregate
observations of other agents, but do not hard-code exclusive targeting of a particular submission
or subset of submissions (harassment) or similar nonaggression (teaming).

4. Reproducible training code is required for prize eligibility. We will contact the winners individ-
ually if they qualify for a prize.

5. Attempting to circumvent any of the above will result in disqualification.

We will be monitoring the submission portal for suspicious activity including duplicate or similar
models or weights from different users. Contact us if you believe your submission is being individually
targeted by another competitor or if you see signs of teaming. We will investigate all accusations
thoroughly and disqualify any participants for whom we find conclusive evidence of cheating.

3.3 Challenge Structure

3.3.1 Competition Rounds

The Neural-MMO Challenge provides a unique opportunity for participants to explore robustness and
teamwork in a massively multi-agent setting with opponents not seen during training. This Challenge
consists of two rounds as described in Section 2.3.1. There are no qualifiers; participants can submit
to any or all of the rounds independently.

3.3.2 Evaluation Stages

We will evaluate your agent in two stages.

Stage 1: Verses Scripted Bots We will evaluate your agent against scripted baselines of a variety
of skill levels. Your objective is to earn more achievement points (see Evaluation Metrics) than your
opponents. We will estimate your agent’s relative skill or match-making rank (MMR) based on several
evaluations on different maps. We generate these maps using the same algorithm and parameters as
provided in the starter kit, but we will use another random seed to produce maps outside of the direct
training data.

Stage 2: Verses Other Participants We will evaluate your agents against models submitted by
other participants as well as our baselines. When there are only a few submissions at the start of
the competition, we will take a uniform sample of agents for each tournament. Once we have enough
submissions from the participants, we will run tournaments by sampling agents of similar estimated
skill levels. Your objective is still to earn more achievement points than your opponents.

7

https://gitlab.aicrowd.com


4 Participants

The number of teams is expected to be about 50 and the number of participants is expected to be
about 100, with teams consisting of up to 4 participants. The estimation is based on the previous
Neural MMO competition organized by AIcrowd1 and the NetHack Competition 2. We expect to the
champion team to attend IJCAI-ECAI 2022 in person but only if the team member is willing.

5 Prizes

We plan to provide cash prizes for winners of both Round 1 and Round 2. The money will be sponsored
by Parametrix.AI and the total cash pool is 20,000 US Dollars. The prizes are designed as follows.

• Round 1

– No.1: $ 3000

– No.2: $ 2000

– No.3: $ 1000

– Community Prize: $1000

• Round 2

– No.1: $ 5000

– No.2: $ 3000

– No.3: $ 2000

– No.4-No.5: $ 1000

– Community Prize: $ 1000

Additionally, we plan to set up a Community Prize participants who substantially contribute to
the Neural MMO community and help foster the challenge.

6 Source Code

The Neural MMO environment is open sourced3 with MIT license. Also we will give a starter kit
and a baseline for the starters. We encourage the participants to open-source their code after the
competition but it is not forced.

7 Timeline in Milestones

The competition has 2 phases. Timeline of the competition 4:

• 2 March: Send out call for participation.

• 20-31 March: Test period, to see if the baselines work for participants.

• 10 March: Phase 1 starts.

• 24 March: Phase 2 starts.

• 28 May: Submission Deadline for Phase 1.

• 10 June: Submission Deadline for Phase 2.

• 25 June: Winner Announcement for Phase 1 & 2.

1https://www.aicrowd.com/challenges/the-neural-mmo-challenge
2https://www.aicrowd.com/challenges/neurips-2021-the-nethack-challenge
3https://github.com/NeuralMMO/environment

8

https://www.aicrowd.com/challenges/the-neural-mmo-challenge
https://www.aicrowd.com/challenges/neurips-2021-the-nethack-challenge
https://github.com/NeuralMMO/environment


Figure 4: Timeline for the Neural MMO Challenge.

8 Post-Proceedings / Publications

We are interested in preparing one paper of our challenge including the most interesting agents /
algorithms / techniques developed by participants.

8.1 Resources Needed during the Conference

• Floor space in square meters (minimum nice to have)? Nice to have 50 square meters.

• Number of beamers with screens required (minimum nice to have)? Nice to have 1.

• Number of monitors required (minimum nice to have)? Nice to have 2.

• Number of tables (minimum nice to have)? Nice to have 50.

• Number of chairs (minimum nice to have)? Nice to have 50.

• Number of electricity sockets and watts (minimum nice to have)? Nice to have 4.

• Wifi accessibility (must-have or nice-to-have)? Must-have

• Private space (must-have or nice-to-have)? In other words, can your competition or challenge be
held in open space, e.g., the lobby? Nice to be held in open space.

9 Organizer Backgrounds and Roles

• Joseph Suarez: Creator of Neural MMO, organizer in the first Neural MMO Challenge and
co-organizer in this challenge

• Sharada Mohanty: AICrowd founder, organizer in the first Neural MMO Challenge and co-
organizer in this challenge

• Jiaxin Chen: Senior Research Scientist at Parametrix.AI, co-organizer of this challenge

• Hanmo Chen: Winner of first Neural MMO Challenge, in the AI master program of Tsinghua
Shenzhen International Graduate School, research intern at Paramatrix.AI

• Xiaolong Zhu: Senior Director at Parametrix.AI, competition advertising and university relations

• Xiu Li, Professor at Tsinghua Shenzhen International Graduate School, advising on challenge
organization

• Clare Zhu: Data scientist involved in early versions of Neural MMO, advising on accessibility to
non-RL methods/backgrounds

9



• Julian Togelius: Associate Professor, NYU, expert in procedural generation with experience on
Neural MMO

• Phillip Isola: Assistant Professor, MIT, Advisor of Neural MMO for 3+ years

References

[SDIM19] Joseph Suarez, Yilun Du, Phillip Isola, and Igor Mordatch. Neural mmo: A massively
multiagent game environment for training and evaluating intelligent agents. arXiv preprint
arXiv:1903.00784, 2019.

10


	Contact Information
	The Proposed Neural MMO Challenge description
	Background and impact
	Environment
	Tiles
	Agents
	Foraging
	Combat
	Achievement System

	Competition Design
	Rounds

	Metrics
	Tournaments

	Baselines, code, and material provided

	Organizational aspects
	Protocol
	Platform
	Submission Protocol

	Rules
	Challenge Structure
	Competition Rounds
	Evaluation Stages


	Participants
	Prizes
	Source Code
	Timeline in Milestones
	Post-Proceedings / Publications
	Resources Needed during the Conference

	Organizer Backgrounds and Roles

